Announcements

1) How \#4 due Thursday
2) Quiz Tuesday next week

Lagrange Multiplier Example

Arithmetic -Geometric Mean
Inequality:
If $x_{1}, x_{2}, \ldots, x_{n}$ are positive real numbers,

$$
\begin{aligned}
& \left(x_{1} x_{2} x_{3} \cdots x_{n}\right)^{1 / n} \\
& \leq \frac{x_{1}+x_{2}+x_{3}+\cdots+x_{n}}{n}
\end{aligned}
$$

For $n=3$

$$
(x y z)^{1 / 3} \leq \frac{x+y+z}{3}
$$

Why is this true?
Maximize $(x y z)^{1 / 3}$ - same as maximizing $x y z$.

Want to maximize subject to the constraint

$$
\frac{x+y+z}{3}=k \text {, same }
$$

as $x+y+z=3 k$.
Using calculus
Maximize $f(x, y, z)=x y z$
Subject to $3 k=x+y+z=g(x, y, z)$

Lagrange Multipliers

$$
\begin{aligned}
& \nabla f=\langle y z, x z, x y\rangle \\
& \nabla g=\langle 1,1,1\rangle
\end{aligned}
$$

Set

$$
\begin{aligned}
& \nabla f=\lambda \nabla g \\
&\langle y z, x z, x y\rangle=\lambda\langle 1,1,1\rangle \\
&=\langle\lambda, \lambda, \lambda\rangle
\end{aligned}
$$

we get

$$
\lambda=\underbrace{x y=y z=x z}_{x=z}
$$

if $y \neq 0$. since $z>0$
but $y>0$!
Then $x=y=z$
Use constraint:

$$
\begin{aligned}
x+y+z & =3 k \\
3 x & =3 k, \\
x & =k, \quad y=k, z=k
\end{aligned}
$$

We found that

$$
f(x, y, z)=x y z, \text { subject }
$$

to $\frac{x+y+z}{3}=k$, has
a maximum when
$x=y=z=k$. In this

$$
\begin{aligned}
& \text { case } f(x, y, z)=k^{3} \\
& \begin{aligned}
(x y z)^{1 / 3}=\left(k^{3}\right)^{1 / 3} & =k \\
& =\frac{x+y+z}{3}
\end{aligned}
\end{aligned}
$$

This says:

$$
(x y z)^{1 / 3}=\frac{x+y+z}{3}
$$

when $x=y=z$;
otherwise, we have strict inequality!
$\frac{\text { Integration }}{(\text { Chapter } 15)}$
We've seen two heads of the Calculus Cerberus in two or three variables - limits and differentiation.

In One Dimension

Two types of regions: intervals ($\int_{a}^{b} f(x) d x$ when $a<b$ - the interval is $[a, b]$) or points

$$
\left(\int_{a}^{a} f(x) d x=0\right)
$$

Q: What geometric concept does the definite integral capture?

A: AREA (under a Curve with non-negative y-values)

Definition: (one variable integral)

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x \\
= & \lim _{n \rightarrow \infty}\left(\frac{b-a}{n} \sum_{i=1}^{n} f\left(x_{i}^{*}\right)\right)
\end{aligned}
$$

where x_{i}^{*} is a point in the interval $\left[a+\frac{(i-1)(b-a)}{n}, a+\frac{i(b-a)}{n}\right]$ provided the limit exists!

The definite integral exists for all continuous functions f.

Picture

$$
\frac{b-a}{4} \quad \frac{b-a}{4} \quad \frac{b-a}{4} \quad \frac{b-a}{4}
$$

Approximate using rectangles, make the width go to zero.

So in three dimensions
$z=f(x, y)$, the graph is in three dimensions.

If $f(x, y)>0$, the integral over a region Should give volume provided the region is non-degeneratel So no points or one-dimensional regions (lines, curves, etc.)

Good regions of integration

rectangles

weird 2-1 region

Bad Regions of Integration

The Definite Integral
(\mathbb{R}^{2}, rectangle)
A solid rectangle in \mathbb{R}^{2} is denoted by

$$
\begin{aligned}
& {[a, b] \times[c, d] } \\
= & \{(x, y) \mid a \leq x \leq b, c \leq y \leq d\}
\end{aligned}
$$

Example $[0,1] \times[0,1]$ is

Subdivide $[a, b]$ into n intervals of size $\frac{b-a}{n}$.
Subdivide $[c, d]$ into m intervals of size $\frac{d-c}{m}$ Pick a point $\left(x_{i, j}^{*}, y_{i, j}^{*}\right)$ in the rectangle

$$
\left[a+\frac{(i-1)(b-a)}{n}, a+\frac{i(b-a)}{n}\right] \times\left[c+\frac{(j-1)(d-c)}{m}, c+\frac{j(a-c)}{m}\right]
$$

for each pair (i, j) with

$$
1 \leq j \leq m, \quad 1 \leq i \leq n
$$

Picture

$\left(x_{1,2}^{*}, y_{1,2}^{*}\right)$	$\cdot\left(x_{2,2}^{*}, y_{2,2}^{*}\right)$	$\left(x_{3,2}^{*}, y_{3,2}^{*}\right)$
$\left(x_{1,1}^{*}, y_{1,1}^{*}\right)$	$\left(x_{2,1}^{*}, y_{2,1}^{*}\right)$	$\left(x_{3,1}^{*}, y_{3,1}^{*}\right)$

$$
\begin{aligned}
& {[0,3] \times[1,2]} \\
& m=2, n=3
\end{aligned}
$$

Horrid Definition For
$z=f(x, y)$ defined on a rectangle $[a, b] \times[c, d]$ in \mathbb{R}^{2}, the definite integral of f over $[a, b] \times[c, d]$ is denoted by $\left.\int_{[a, b] \times[c, d]} f(x, y) d A\right)^{A \text { for "area" }}$ and defined as

$$
\begin{aligned}
& \int_{[a, b] \times[c, d]} f(x, y) d A \\
= & \lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty}\left(\frac{b-a}{n} \frac{d-c}{m} \sum_{i=1}^{n} \sum_{j=1}^{m} f\left(x_{i, j}^{*}, y_{i, j}^{*}\right)\right)
\end{aligned}
$$

provided the limit exists!
Again, if f is continuous, the limit will exist. How do you find it?

Fubinis Theorem
If $z=f(x, y)$ is continuous on $[a, b] \times[c, d]$, then

$$
\begin{aligned}
& \quad \int_{[a} f(x, y) d A \\
& {[a, b] \times[c, d]} \\
& =\int_{a}^{b}\left(\int_{c}^{d} f(x, y) d y\right) d x \\
& =\int_{c}^{d}\left(\int_{a}^{b} f(x, y) d x\right) d y
\end{aligned}
$$

where
$\int_{a}^{b} f(x, y) d x$ means treat
$f(x, y)$ as a function of x with y constant, integrate with respect to x. For $\int_{c}^{d} f(x, y) d y$, interchange the roles of x and y.

Example 1: $\int y e^{x y} d A$

$$
[0, \ln (2)] \times[1,4]
$$

Use Fubinis Theorem:

$$
\begin{aligned}
& \int_{[0, \ln (2)] \times[1,4]} y e^{x y} d A \\
= & \int_{0}^{\ln (x)}(\underbrace{\left.\int_{1}^{4} y e^{x y} d y\right) d x}_{\text {integration by parts! }}
\end{aligned}
$$

The integral is also equal to

$$
\begin{aligned}
& \int_{1}^{4}\left(\int_{0}^{\ln (\partial)} y e^{x y} d x\right) d y \\
= & \int_{1}^{4}\left(y \int_{0}^{\ln (\partial)} e^{x y} d x\right) d y \\
= & \int_{1}^{4}\left(y\left(\left.\frac{e^{x y}}{y}\right|_{0} ^{\ln (2)}\right)\right) d y \\
= & \int_{1}^{4} 9 x y\left(e^{\ln (2) y}-1\right) d y
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{1}^{4}\left(e^{\ln (2) y}-1\right) d y \\
& =\left.\left(\frac{e^{\ln (2) y}}{\ln (2)}-y\right)\right|_{1} ^{4} \\
& =\left(\frac{e^{4 \ln (2)}}{\ln (2)}-4\right)-\left(\frac{e^{\ln (2)}}{\ln (2)}-1\right) \\
& =\frac{14}{\ln (2)}-3
\end{aligned}
$$

Easy Scenario
If $z=f(x, y)=g(x) h(y)$ on $[a, b] \times[c, d]$ and f is continuous,

$$
\begin{aligned}
& \int_{[a, b] \times[c, d]} f(x, y) d A \\
= & \int_{a}^{b} g(x) d x \cdot \int_{c}^{d} h(y) d y
\end{aligned}
$$

Example $2 \int x^{3} \arctan (\ln (\cos (y))) d A$

$$
[-3,3] \times[0, \pi / 3]
$$

By Fubinis theorem, this integral is equal to

$$
\int_{-3}^{3} x^{3} d x \cdot \int_{0}^{\pi / 3} \arctan (\ln (\cos (y))) d y
$$

$=0$ since x^{3} is odd and the domain is symmetric.

So the value of the integral is zero!

Note: I have no idea how to integrate $\arctan (\ln (\cos (y)))$.

Boring Properties of the Integral
Let R be the region $[a, b] \times[c, d]$ in \mathbb{R}^{2}, let f, g be continuous real-valued functions on R. Then

1) $\int(f(x, y)+g(x, y)) d A$

$$
=\int_{R}^{R} f(x, y) d A+\int_{R} g(x, y) d A
$$

(integrals distribute over addition)
2) If c is any constant,

$$
\int_{R} c f(x, y) d A=c \int_{R} f(x, y) d A
$$

(can pull constants out of integrals)
3) If D is a one or zero dimensional region in \mathbb{R}^{2}, then

$$
\int_{D} f(x, y) d A=0
$$

Fake Fubini Justification

$$
\begin{aligned}
& \int_{a}^{b}\left(\int_{c}^{d} f(x, y) d y\right) d x \\
= & \int_{a}^{b} \lim _{m \rightarrow \infty}\left(\frac{d-c}{m} \sum_{j=1}^{m} f\left(x, y_{j}^{*}\right)\right) d x \\
= & \lim _{m \rightarrow \infty} \frac{d-c}{m} \int_{a}^{b} \sum_{j=1}^{m} f\left(x, y_{j}^{*}\right) d x \\
= & \lim _{m \rightarrow \infty} \frac{d-c}{m} \sum_{j=1}^{m} \int_{a}^{b} f\left(x, y_{j}^{*}\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{m \rightarrow \infty} \frac{d-c}{m} \sum_{j=1}^{m} \lim _{n \rightarrow \infty}\left(\frac{b-a}{n} \sum_{i=1}^{n} f\left(x_{i}^{*}, y_{j}^{\prime}\right)\right) \\
& =\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} \frac{d-c}{m} \frac{b-a}{n} \sum_{j=1}^{m} \sum_{i=1}^{n} f\left(x_{i}^{*}, y_{j}^{*}\right) \\
& =\int \quad \int_{j} f(x, y) d A \\
& {[a, b] \times[c, d]}
\end{aligned}
$$

Where did I lie to you?

